971 resultados para Traveling salesman problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The traveling salesman problem is although looking very simple problem but it is an important combinatorial problem. In this thesis I have tried to find the shortest distance tour in which each city is visited exactly one time and return to the starting city. I have tried to solve traveling salesman problem using multilevel graph partitioning approach.Although traveling salesman problem itself very difficult as this problem is belong to the NP-Complete problems but I have tried my best to solve this problem using multilevel graph partitioning it also belong to the NP-Complete problems. I have solved this thesis by using the k-mean partitioning algorithm which divides the problem into multiple partitions and solving each partition separately and its solution is used to improve the overall tour by applying Lin Kernighan algorithm on it. Through all this I got optimal solution which proofs that solving traveling salesman problem through graph partition scheme is good for this NP-Problem and through this we can solved this intractable problem within few minutes.Keywords: Graph Partitioning Scheme, Traveling Salesman Problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solutions to Traveling Salesman Problem can be widely applied in many real-world problems. Ant colony optimization algorithms can provide an approximate solution to a Traveling Salesman Problem. However, most ant colony optimization algorithms suffer premature convergence and low convergence rate. With these observations in mind, a novel ant colony system is proposed, which employs the unique feature of critical tubes reserved in the Physaurm-inspired mathematical model. A series of experiments are conducted, which are consolidated by two realworld Traveling Salesman Problems. The experimental results show that the proposed new ant colony system outperforms classical ant colony system, genetic algorithm, and particle swarm optimization algorithm in efficiency and robustness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi viene presentato un nuovo metaeuristico per la risoluzione del Traveling Salesman Problem (TSP) simmetrico. Tale metodo, detto algoritmo bionomico, è una variante dell'algoritmo genetico che usa un metodo innovativo di generazione del parents set. Nella tesi vengono proposti diversi metodi di crossover specifici per il TSP ma che possono essere facilmente estesi per altri problemi di ottimizzazione combinatoria. Tali metodi sono stati sperimentati su un insieme di problemi test, i risultati computazionali mostrano l'efficienza dei metodi proposti. In particolare uno dei metodi domina gli altri sia per la miglior qualità delle soluzioni prodotte che per il minor tempo di calcolo impiegato.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Supported in part jointly by the Atomic Energy Commission and the Advanced Research Projects Agency (ARPA) under AEC Contract AT(11-1)-1018."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The asymmetric travelling salesman problem with replenishment arcs (RATSP), arising from work related to aircraft routing, is a generalisation of the well-known ATSP. In this paper, we introduce a polynomial size mixed-integer linear programming (MILP) formulation for the RATSP, and improve an existing exponential size ILP formulation of Zhu [The aircraft rotation problem, Ph.D. Thesis, Georgia Institute of Technology, Atlanta, 1994] by proposing two classes of stronger cuts. We present results that under certain conditions, these two classes of stronger cuts are facet-defining for the RATS polytope, and that ATSP facets can be lifted, to give RATSP facets. We implement our polyhedral findings and develop a Lagrangean relaxation (LR)-based branch-and-bound (BNB) algorithm for the RATSP, and compare this method with solving the polynomial size formulation using ILOG Cplex 9.0, using both randomly generated problems and aircraft routing problems. Finally we compare our methods with the existing method of Boland et al. [The asymmetric traveling salesman problem with replenishment arcs, European J. Oper. Res. 123 (2000) 408–427]. It turns out that both of our methods are much faster than that of Boland et al. [The asymmetric traveling salesman problem with replenishment arcs, European J. Oper. Res. 123 (2000) 408–427], and that the LR-based BNB method is more efficient for problems that resemble the aircraft rotation problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article presents the exact algorithm for solving one case of the job-scheduling problem for the case when the source matrix is ordered by rows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We motivate, derive, and implement a multilevel approach to the travelling salesman problem.The resulting algorithm progressively coarsens the problem, initialises a tour, and then employs either the Lin-Kernighan (LK) or the Chained Lin-Kernighan (CLK) algorithm to refine the solution on each of the coarsened problems in reverse order.In experiments on a well-established test suite of 80 problem instances we found multilevel configurations that either improved the tour quality by over 25% as compared to the standard CLK algorithm using the same amount of execution time, or that achieved approximately the same tour quality over seven times more rapidly. Moreover, the multilevel variants seem to optimise far better the more clustered instances with which the LK and CLK algorithms have the most difficulties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesis Work will concentrate on a very interesting problem, the Vehicle Routing Problem (VRP). In this problem, customers or cities have to be visited and packages have to be transported to each of them, starting from a basis point on the map. The goal is to solve the transportation problem, to be able to deliver the packages-on time for the customers,-enough package for each Customer,-using the available resources- and – of course - to be so effective as it is possible.Although this problem seems to be very easy to solve with a small number of cities or customers, it is not. In this problem the algorithm have to face with several constraints, for example opening hours, package delivery times, truck capacities, etc. This makes this problem a so called Multi Constraint Optimization Problem (MCOP). What’s more, this problem is intractable with current amount of computational power which is available for most of us. As the number of customers grow, the calculations to be done grows exponential fast, because all constraints have to be solved for each customers and it should not be forgotten that the goal is to find a solution, what is best enough, before the time for the calculation is up. This problem is introduced in the first chapter: form its basics, the Traveling Salesman Problem, using some theoretical and mathematical background it is shown, why is it so hard to optimize this problem, and although it is so hard, and there is no best algorithm known for huge number of customers, why is it a worth to deal with it. Just think about a huge transportation company with ten thousands of trucks, millions of customers: how much money could be saved if we would know the optimal path for all our packages.Although there is no best algorithm is known for this kind of optimization problems, we are trying to give an acceptable solution for it in the second and third chapter, where two algorithms are described: the Genetic Algorithm and the Simulated Annealing. Both of them are based on obtaining the processes of nature and material science. These algorithms will hardly ever be able to find the best solution for the problem, but they are able to give a very good solution in special cases within acceptable calculation time.In these chapters (2nd and 3rd) the Genetic Algorithm and Simulated Annealing is described in details, from their basis in the “real world” through their terminology and finally the basic implementation of them. The work will put a stress on the limits of these algorithms, their advantages and disadvantages, and also the comparison of them to each other.Finally, after all of these theories are shown, a simulation will be executed on an artificial environment of the VRP, with both Simulated Annealing and Genetic Algorithm. They will both solve the same problem in the same environment and are going to be compared to each other. The environment and the implementation are also described here, so as the test results obtained.Finally the possible improvements of these algorithms are discussed, and the work will try to answer the “big” question, “Which algorithm is better?”, if this question even exists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Asymmetric Travelling Salesman Problem with Replenishment Arcs (RATSP) is a new class of problems arising from work related to aircraft routing. Given a digraph with cost on the arcs, a solution of the RATSP, like that of the Asymmetric Travelling Salesman Problem, induces a directed tour in the graph which minimises total cost. However the tour must satisfy additional constraints: the arc set is partitioned into replenishment arcs and ordinary arcs, each node has a non-negative weight associated with it, and the tour cannot accumulate more than some weight limit before a replenishment arc must be used. To enforce this requirement, constraints are needed. We refer to these as replenishment constraints.

In this paper, we review previous polyhedral results for the RATSP and related problems, then prove that two classes of constraints developed in V. Mak and N. Boland [Polyhedral results and exact algorithms for the asymmetric travelling salesman problem with replenishment arcs, Technical Report TR M05/03, School of Information Technology, Deakin University, 2005] are, under appropriate conditions, facet-defining for the RATS polytope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the Cardinality Constrained Quadratic Knapsack Problem (QKP) and the Quadratic Selective Travelling Salesman Problem (QSTSP). The QKP is a generalization of the Knapsack Problem and the QSTSP is a generalization of the Travelling Salesman Problem. Thus, both problems are NP hard. The QSTSP and the QKP can be solved using branch-and-cut methods. Good bounds can be obtained if strong constraints are used. Hence it is important to identify strong or even facet-defining constraints. This paper studies the polyhedral combinatorics of the QSTSP and the QKP, i.e. amongst others we identify facet-defining constraints for the QSTSP and the QKP, and provide mathematical proofs that they do indeed define facets.